チャットAI「競馬」…
地方 中央競馬AI予想 無料で自動投票アプリ

あなた: ラピドフィオーレ

エラー: HTTPConnectionPool(host='intelli-bet.com', port=80): Max retries exceeded with url: /chat/chat.php?txt=%E3%83%A9%E3%83%94%E3%83%89%E3%83%95%E3%82%A3%E3%82%AA%E3%83%BC%E3%83%AC&add=%E7%AB%B6%E9%A6%AC (Caused by NewConnectionError(': Failed to establish a new connection: [Errno 111] Connection refused')) --> -->
 
 
ValueError
Python 3.8.16: /usr/bin/python3.8
Mon Feb 24 08:30:09 2025

A problem occurred in a Python script. Here is the sequence of function calls leading up to the error, in the order they occurred.

 /var/www/html/ib/public/chat/chat.py in <module>
    205         user_input_with_prompt = f"あなたの名前はAIBuruで競馬、競艇、競輪の専門家です。今年は"+year+"の前提で必ずフランクな日本語の会話調で答えてください。:"+user_input+""
    206 
=>  207         response = chatbot(user_input_with_prompt, max_length=maxss, num_return_sequences=sentsuu)
    208         output = response[0]["generated_text"].replace(user_input_with_prompt, "").strip()
    209 
response undefined, chatbot = <transformers.pipelines.text_generation.TextGenerationPipeline object>, user_input_with_prompt = 'あなたの名前はAIBuruで競馬、競艇、競輪の専門家です。今年は2025年の前提で必ずフランクな日本語の会話調で答えてください。:ラピドフィオーレ 競馬', max_length undefined, maxss = 61, num_return_sequences undefined, sentsuu = 2
 /usr/local/lib/python3.8/site-packages/transformers/pipelines/text_generation.py in __call__(self=<transformers.pipelines.text_generation.TextGenerationPipeline object>, text_inputs='あなたの名前はAIBuruで競馬、競艇、競輪の専門家です。今年は2025年の前提で必ずフランクな日本語の会話調で答えてください。:ラピドフィオーレ 競馬', **kwargs={'max_length': 61, 'num_return_sequences': 2})
    270                 return super().__call__(chats, **kwargs)
    271         else:
=>  272             return super().__call__(text_inputs, **kwargs)
    273 
    274     def preprocess(
builtin super = <class 'super'>, ).__call__ = <method-wrapper '__call__' of type object>, text_inputs = 'あなたの名前はAIBuruで競馬、競艇、競輪の専門家です。今年は2025年の前提で必ずフランクな日本語の会話調で答えてください。:ラピドフィオーレ 競馬', kwargs = {'max_length': 61, 'num_return_sequences': 2}
 /usr/local/lib/python3.8/site-packages/transformers/pipelines/base.py in __call__(self=<transformers.pipelines.text_generation.TextGenerationPipeline object>, inputs='あなたの名前はAIBuruで競馬、競艇、競輪の専門家です。今年は2025年の前提で必ずフランクな日本語の会話調で答えてください。:ラピドフィオーレ 競馬', num_workers=0, batch_size=1, *args=(), **kwargs={'max_length': 61, 'num_return_sequences': 2})
   1300             )
   1301         else:
=> 1302             return self.run_single(inputs, preprocess_params, forward_params, postprocess_params)
   1303 
   1304     def run_multi(self, inputs, preprocess_params, forward_params, postprocess_params):
self = <transformers.pipelines.text_generation.TextGenerationPipeline object>, self.run_single = <bound method Pipeline.run_single of <transforme...s.text_generation.TextGenerationPipeline object>>, inputs = 'あなたの名前はAIBuruで競馬、競艇、競輪の専門家です。今年は2025年の前提で必ずフランクな日本語の会話調で答えてください。:ラピドフィオーレ 競馬', preprocess_params = {'max_length': 61, 'num_return_sequences': 2}, forward_params = {'max_length': 61, 'num_return_sequences': 2}, postprocess_params = {}
 /usr/local/lib/python3.8/site-packages/transformers/pipelines/base.py in run_single(self=<transformers.pipelines.text_generation.TextGenerationPipeline object>, inputs='あなたの名前はAIBuruで競馬、競艇、競輪の専門家です。今年は2025年の前提で必ずフランクな日本語の会話調で答えてください。:ラピドフィオーレ 競馬', preprocess_params={'max_length': 61, 'num_return_sequences': 2}, forward_params={'max_length': 61, 'num_return_sequences': 2}, postprocess_params={})
   1307     def run_single(self, inputs, preprocess_params, forward_params, postprocess_params):
   1308         model_inputs = self.preprocess(inputs, **preprocess_params)
=> 1309         model_outputs = self.forward(model_inputs, **forward_params)
   1310         outputs = self.postprocess(model_outputs, **postprocess_params)
   1311         return outputs
model_outputs undefined, self = <transformers.pipelines.text_generation.TextGenerationPipeline object>, self.forward = <bound method Pipeline.forward of <transformers....s.text_generation.TextGenerationPipeline object>>, model_inputs = {'input_ids': tensor([[ 2, 93455, 43061, 2...今年は2025年の前提で必ずフランクな日本語の会話調で答えてください。:ラピドフィオーレ 競馬'}, forward_params = {'max_length': 61, 'num_return_sequences': 2}
 /usr/local/lib/python3.8/site-packages/transformers/pipelines/base.py in forward(self=<transformers.pipelines.text_generation.TextGenerationPipeline object>, model_inputs={'input_ids': tensor([[ 2, 93455, 43061, 2..., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}, **forward_params={'max_length': 61, 'num_return_sequences': 2})
   1207                 with inference_context():
   1208                     model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device)
=> 1209                     model_outputs = self._forward(model_inputs, **forward_params)
   1210                     model_outputs = self._ensure_tensor_on_device(model_outputs, device=torch.device("cpu"))
   1211             else:
model_outputs undefined, self = <transformers.pipelines.text_generation.TextGenerationPipeline object>, self._forward = <bound method TextGenerationPipeline._forward of...s.text_generation.TextGenerationPipeline object>>, model_inputs = {'input_ids': tensor([[ 2, 93455, 43061, 2..., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}, forward_params = {'max_length': 61, 'num_return_sequences': 2}
 /usr/local/lib/python3.8/site-packages/transformers/pipelines/text_generation.py in _forward(self=<transformers.pipelines.text_generation.TextGenerationPipeline object>, model_inputs={'input_ids': tensor([[ 2, 93455, 43061, 2..., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}, **generate_kwargs={'generation_config': GenerationConfig { "bos_token_id": 2, "cache...id": [ 1, 107 ], "pad_token_id": 0 } , 'max_length': 61, 'num_return_sequences': 2})
    368             generate_kwargs["generation_config"] = self.generation_config
    369 
=>  370         generated_sequence = self.model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
    371         out_b = generated_sequence.shape[0]
    372         if self.framework == "pt":
generated_sequence undefined, self = <transformers.pipelines.text_generation.TextGenerationPipeline object>, self.model = Gemma2ForCausalLM( (model): Gemma2Model( (...features=2304, out_features=256000, bias=False) ), self.model.generate = <bound method GenerationMixin.generate of Gemma2...eatures=2304, out_features=256000, bias=False) )>, input_ids = tensor([[ 2, 93455, 43061, 235418, 235280,... 16442, 27966, 235566, 235248, 159470]]), attention_mask = tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), generate_kwargs = {'generation_config': GenerationConfig { "bos_token_id": 2, "cache...id": [ 1, 107 ], "pad_token_id": 0 } , 'max_length': 61, 'num_return_sequences': 2}
 /usr/local/lib64/python3.8/site-packages/torch/utils/_contextlib.py in decorate_context(*args=(Gemma2ForCausalLM( (model): Gemma2Model( (...features=2304, out_features=256000, bias=False) ),), **kwargs={'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'generation_config': GenerationConfig { "bos_token_id": 2, "cache...id": [ 1, 107 ], "pad_token_id": 0 } , 'input_ids': tensor([[ 2, 93455, 43061, 235418, 235280,... 16442, 27966, 235566, 235248, 159470]]), 'max_length': 61, 'num_return_sequences': 2})
    113     def decorate_context(*args, **kwargs):
    114         with ctx_factory():
=>  115             return func(*args, **kwargs)
    116 
    117     return decorate_context
func = <function GenerationMixin.generate>, args = (Gemma2ForCausalLM( (model): Gemma2Model( (...features=2304, out_features=256000, bias=False) ),), kwargs = {'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'generation_config': GenerationConfig { "bos_token_id": 2, "cache...id": [ 1, 107 ], "pad_token_id": 0 } , 'input_ids': tensor([[ 2, 93455, 43061, 235418, 235280,... 16442, 27966, 235566, 235248, 159470]]), 'max_length': 61, 'num_return_sequences': 2}
 /usr/local/lib/python3.8/site-packages/transformers/generation/utils.py in generate(self=Gemma2ForCausalLM( (model): Gemma2Model( (...features=2304, out_features=256000, bias=False) ), inputs=None, generation_config=GenerationConfig { "bos_token_id": 2, "cache...id": [ 1, 107 ], "pad_token_id": 0 } , logits_processor=None, stopping_criteria=None, prefix_allowed_tokens_fn=None, synced_gpus=None, assistant_model=None, streamer=None, negative_prompt_ids=None, negative_prompt_attention_mask=None, **kwargs={'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'input_ids': tensor([[ 2, 93455, 43061, 235418, 235280,... 16442, 27966, 235566, 235248, 159470]]), 'max_length': 61, 'num_return_sequences': 2})
   1969         assistant_tokenizer = kwargs.pop("assistant_tokenizer", None)  # only used for assisted generation
   1970 
=> 1971         generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs)
   1972         self._validate_model_kwargs(model_kwargs.copy())
   1973         self._validate_assistant(assistant_model, tokenizer, assistant_tokenizer)
generation_config = GenerationConfig { "bos_token_id": 2, "cache...id": [ 1, 107 ], "pad_token_id": 0 } , model_kwargs undefined, self = Gemma2ForCausalLM( (model): Gemma2Model( (...features=2304, out_features=256000, bias=False) ), self._prepare_generation_config = <bound method GenerationMixin._prepare_generatio...eatures=2304, out_features=256000, bias=False) )>, kwargs = {'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'input_ids': tensor([[ 2, 93455, 43061, 235418, 235280,... 16442, 27966, 235566, 235248, 159470]]), 'max_length': 61, 'num_return_sequences': 2}
 /usr/local/lib/python3.8/site-packages/transformers/generation/utils.py in _prepare_generation_config(self=Gemma2ForCausalLM( (model): Gemma2Model( (...features=2304, out_features=256000, bias=False) ), generation_config=GenerationConfig { "bos_token_id": 2, "cache..."num_return_sequences": 2, "pad_token_id": 0 } , **kwargs={'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'input_ids': tensor([[ 2, 93455, 43061, 235418, 235280,... 16442, 27966, 235566, 235248, 159470]]), 'max_length': 61, 'num_return_sequences': 2})
   1508         if not is_torchdynamo_compiling():
   1509             generation_config = copy.deepcopy(generation_config)
=> 1510             model_kwargs = generation_config.update(**kwargs)
   1511             # If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model
   1512             if not using_model_generation_config:
model_kwargs undefined, generation_config = GenerationConfig { "bos_token_id": 2, "cache..."num_return_sequences": 2, "pad_token_id": 0 } , generation_config.update = <bound method GenerationConfig.update of Generat...num_return_sequences": 2, "pad_token_id": 0 } >, kwargs = {'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'input_ids': tensor([[ 2, 93455, 43061, 235418, 235280,... 16442, 27966, 235566, 235248, 159470]]), 'max_length': 61, 'num_return_sequences': 2}
 /usr/local/lib/python3.8/site-packages/transformers/generation/configuration_utils.py in update(self=GenerationConfig { "bos_token_id": 2, "cache..."num_return_sequences": 2, "pad_token_id": 0 } , **kwargs={'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 'input_ids': tensor([[ 2, 93455, 43061, 235418, 235280,... 16442, 27966, 235566, 235248, 159470]]), 'max_length': 61, 'num_return_sequences': 2})
   1277 
   1278         # Confirm that the updated instance is still valid
=> 1279         self.validate()
   1280 
   1281         # Remove all the attributes that were updated, without modifying the input dict
self = GenerationConfig { "bos_token_id": 2, "cache..."num_return_sequences": 2, "pad_token_id": 0 } , self.validate = <bound method GenerationConfig.validate of Gener...num_return_sequences": 2, "pad_token_id": 0 } >
 /usr/local/lib/python3.8/site-packages/transformers/generation/configuration_utils.py in validate(self=GenerationConfig { "bos_token_id": 2, "cache..."num_return_sequences": 2, "pad_token_id": 0 } , is_init=False)
    712             if self.num_beams == 1:
    713                 if self.do_sample is False:
=>  714                     raise ValueError(
=>  715                         "Greedy methods without beam search do not support `num_return_sequences` different than 1 "
=>  716                         f"(got {self.num_return_sequences})."
builtin ValueError = <class 'ValueError'>

ValueError: Greedy methods without beam search do not support `num_return_sequences` different than 1 (got 2).
      args = ('Greedy methods without beam search do not support `num_return_sequences` different than 1 (got 2).',)
      with_traceback = <built-in method with_traceback of ValueError object>